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ABSTRACT

In PET-based patient monitoring, tumor changes can be
assessed using standardized uptake values (SUV), tumor
volume (V), or total lesion glycolysis (TLG). We studied
the impact of the SUV, V and TLG estimation methods on
the interpretation of tumor changes between 2 PET scans.
We also propose a bootstrap approach to assign statistical
significance to the observed tumor changes.

In 17 tumor changes, the SUV variations were the least
dependent on the estimation method compared to the V or
TLG changes. In 16/17 cases, SUV changes were
significant. In 2 out of these 16 significant cases, at least
one SUV index suggested non significant change.

Testing the significance of tumor feature changes might
reduce errors in interpreting tumor changes.

Index Terms— Positron emission tomography, lung,
tumors, biomedical monitoring, statistics

1. INTRODUCTION

FDG PET is increasingly used for therapy monitoring in
oncology [1]. Yet, there is no consensus on the way tumor
volume and metabolism should be measured from the PET
images. The purpose of this study was to determine the
impact of the measurement method on the data
interpretation in the context of patient monitoring. We also
propose a practical method to assign statistical significance
to the observed tumor changes.

2. MATERIALS AND METHODS
2.1. Patient data

Two patients with lung cancer were scanned on a GE
Discovery LS PET/CT system 5 and 6 times over the
course of chemotherapy (from March 2006 to January 2007
and from December 2005 to February 2007). PET images
were reconstructed using OSEM (2 iterations, 28 subsets,
Gaussian post-smoothing of 5.45 mm full width at half
maximum), corrected for attenuation using the CT and for
scatter using a convolution subtraction method. Eight
lesions in total were followed from one scan to the next,
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yielding 17 tumor changes between two consecutive scans
available for analysis.

2.2. Segmentation methods

Four methods were used to segment the tumors on the PET
data: manual delineation (Expert), two threshold-based
methods (Tmax and Tcon) and an original fitting method
(Fit), giving 4 independent volume estimates.

2.2.1. Expert delineation

The tumors were manually delineated by an expert using the
PET images only, without considering the CT images or
the PET/CT image fusion.

2.2.2. Maximum Intensity Threshold method

Tmax is a conventional threshold method in which all

neighbor pixels with an intensity equal to or greater than a

certain percentage of the maximum pixel intensity in the

tumor are considered as belonging to the tumor [2]. The

threshold #,.. is defined in Eq. 1, where /... is the maximum

pixel intensity and o was taken equal to 0.4.
foae =O0XT Eq.1

2.2.3. Contrast-based Threshold method

Tcon is a threshold method taking into account the contrast

between the tumor and the background intensity. The
threshold ¢.,, is defined by:

tcon = ﬂopt x 170% + Ibackground qu
I, is the mean intensity in a region including all pixels
with an intensity equal or greater than 70% of the maximum
pixel intensity in the tumor. I, is used instead of [

as it is less influenced by noise. B was determined using

opt
a phantom experiment. 6 hollow spheres with volumes from
0.5 to 16 mL were placed in a cylindrical phantom (Figure
1). The spheres and the phantom were filled with FDG to

get sphere-to-background activity ratios of 10. ﬂupt was
calculated as the average of the 6 3 yielding a region with a

volume equal to the volume of each sphere. The parameter
By was found to be equal to 0.336.
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Figure 1. Cylindrical phantom with the 6 spheres

2.2.4. Fitting method

The fitting method, derived from Chen et al [3], used a 3D
geometric model based on a “tumor” shape derived from
activity thresholding. The spatial resolution in the
reconstructed images was also assumed to be known. While
Chen et al assumed a spherical shape for the tumor (which
is a crude approximation for most tumors), in our approach,
the tumor 3D shape was first determined using the Tcon
method with a low threshold, defined as:

tlow = (/:;opr - 005) x 170% +1

background Eq 3
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Figure 2. Illustration of the fitting approach.

The region segmented with the £, threshold was assumed

to be systematically larger than or equal to the actual tumor
volume. In addition, it was assumed that the shape of this
region was more similar to the shape of the tumor than a
sphere.

Erosions of the resulting 3D shape were then performed to
determine the volume that best fitted the observed image,
using a 3D stationary convolution model based on the
spatial resolution in the reconstructed image (Figure 2). A
simplex algorithm determined the number of erosions, the
activity values in the background and in the lesion
minimizing a least square difference between the model and
the image. Because the spatial resolution of the
reconstructed images is embedded in the model, the
estimated activity values were intrinsically corrected for
partial volume effect. As the original voxel size in the
image (3.9%3.9%¥4.25 mm’) was too large to get precise
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volume estimates using successive erosions, pixel size was
. 3 . .
first reduced to 1*1*1 mm” with a cubic PCHIP

interpolation [4,5] before applying the initial #,,, threshold.

The convolved model images were then resampled to the
original pixel size to be compared to the original image.
The fitting method was implemented in the MATLAB
software (The MathWorks, Inc., Natick, MA).

2.3. SUV calculations

Six methods were used to estimate the SUV. SUVmax was
defined as the maximum pixel value in the tumor. A mean
SUV called SUV15mm was calculated in a VOI (Volume
Of Interest) consisting of 3 circular 15-mm-diameter regions
centered on the maximum intensity pixel in 3 consecutive
slices. Two mean SUV were calculated in regions
segmented according to the 2 previously described threshold
segmentation methods (SUVmeanTmax, SUVmeanTcon).
The fitting method gave an estimation of the SUV corrected
for partial volume effect SUVmeanFit. We also calculated
SUVmeanExpertRC, defined as the mean SUV in the VOI
delineated by the expert corrected for partial volume effect
using a recovery coefficient method [6,7].

2.4. TLG calculations

Total Lesion Glycolysis is defined as the product of SUV
and volume and describes the global metabolism of the
tumor [8].

For each of the 4 segmentation methods, the corresponding
TLG was calculated, as the product of the volume by the
corresponding SUV (TLGmeanTmax, TLGmeanTcon,
TLGmeanFit, TLGmeanExpertRC).

2.5. Statistical analysis

2.5.1. Variability of the methods

To determine the impact of the estimation method on the
measured change in feature estimates between two scans, we
calculated, for each feature (SUV, V and TLG), the mean
difference between the two extreme percent changes C,.(1)
and C,a(1):

N,
Y Crin (D) = C o (i)
AC = =

Eq.4
tc

where N, is the number of tumor changes i considered,
Chin(1) 18 the minimum percent change observed for tumor i
for the considered feature (SUV, V, or TLG) and Cax(i) is
the maximum percent change observed for tumor i for that
feature.

The greater this mean difference, the larger the variability of
the result as a function of the parameter estimation method.

2.5.2. Bootstrap analysis

As will be shown below, the measured change in tumor
features between two scans highly depended on the method
used to estimate the tumor feature.
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Figure 3. Mean estimated variation of SUV, Volume and TLG for all the estimates for patient 1 (A) and patient 2 (B). TX
E(Y+1)-E(Y) indicates the change of tumor X between scan Y and scan Y+1.

We therefore propose a statistical approach to take
advantages of the different feature estimates. The method
tests the null hypothesis that there is no change occurring
between the two scans (e.g. HO = “percent SUV change is
zero” when considering the SUV feature), using a non-
parametric bootstrap approach adapted to small samples.
Based on a N-value sample of the feature of interest (N=6
for the SUV in our case), the method consists in drawing B
bootstrap samples of N values each [9]. For each bootstrap
sample, the bootstrap statistics
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N

is calculated, where Z *is the mean of the bootstrap sample,
O * is standard deviation of the bootstrap sample, Z is the
mean of the original sample.

The resulting B #(z*) values are compared to ?

¢ = L7H

= —
obs o / [ N
where Z and o are respectively the mean and the standard

deviation of the original sample, u is the value of tested
mean. The achieved significance level (ASL) is defined as:

xb
AST < #{t(z B) =1,

Eq.5

given by:

obs

Eq.6

Eq.7

We finally compared the ASL to the chosen level of
significance a. For our application, we chose B = 200, u=0
and a=0.05.

3. RESULTS

3.1. Reproducibility of the parameters characterizing
tumor changes

The mean AC (+ 1 sd) between the extreme percent changes
(Equation 4) was 29%+21% for SUV, 78%+84% for TLG
and 92%=%79% for V. This suggests that the most
reproducible parameter to estimate tumor change was the
SUV percent change. Percent changes in volumes largely
varied depending on the segmentation method. As TLG
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uses the volume information, it was also affected by this
large variability. Figure 3 shows the mean estimated
variation of SUV, Volume and TLG for all the estimates,
for the tumor and the successive scans of one patient. The
error bar limits represent the extreme percent change (C,.
and C,.).

3.3. Statistical analysis

The ASL obtained by the bootstrap analysis of mean test are
shown in Table 1.

For the 17 tumor changes considered (Table 1), one case
(Patient 1, tumor 2, change between scan 2 and scan 3)
shows an ASL value greater than our chosen level of
significance a.=0.05, suggesting no significant change of
SUV between the two scans. For all other 16 cases, the
changes in SUV were found to be significant.

By considering this result as the gold standard to establish
whether the percent change in SUV was indeed significant
or not, we could test how often wrong interpretations would
have occurred if interpreting a single SUV index. Assuming
that a percent change in SUV less than 10% would not be
interpreted as a significant SUV change, we found that in 2
out of the 16 significant changes in SUV, considering a
single SUV estimate would have led to a misinterpretation
(no significant change): for tumor 3 of patient 1, the
SUVmeanTcon percent change between scan 1 and scan 2
was less than 10%, and for tumor 7 of patient 1, the
SUV15mm percent change between scan 2 and scan 3 was
less than 10%, while the ASL value indicated significant
changes in SUV. On the other hand, for the non significant
change corresponding to an ASL>0.05 (tumor 2 of patient 1
for between scan 2 and scan 3), 5 out of 6 SUV change
estimates were greater than 10% in absolute value,
indicating a significant change.



Patient1 | T2 E2-E1| T3 E2-E1| T2 E3-E2 | T7 E3-E2| T2 E4-E3| T7 E4-E3 | T2 E5-E4| T7 E5-E4

ASL 0 0.01 0.085 0 0.01 0 0 0.025

Patient2 | T1 E2-E1| T2 E2-E1| T3 E2-E1| T4 E2-E1| T6 E2-E1| T1 E3-E2 | T2 E3-E2| T1 E5-E4| T1 E6-E5
ASL 0 0.005 0.015 0 0 0 0.005 0.01 0

Table 1. ASL obtained with the bootstrap analysis for 8 tumor changes of patient 1 and for 9 tumor changes of patient 2. TX
E(Y+1)-E(Y) indicates the change of tumor X between scan Y and scan Y+1.

4. DISCUSSION

In our study, we showed that SUV was the most
reproducible parameter to estimate tumor changes during
therapy monitoring. As previously described [10]; percent
changes in SUV mostly showed the same trend for the
different SUV estimates, but the amplitude of these changes
was highly variable depending on the SUV estimate. This
variability makes it difficult to establish criteria to
objectively assess tumor response from FDG PET images.

Our results suggest that variations of metabolic tumor
volumes as measured from successive PET scans highly
depend on the method used to measure the tumor volume
(Figure 3). Figure 3 shows that the tumor volume and SUV
can even follow opposite variations: mean increase in SUV
and mean decrease in tumor volumes in tumor 7 of patient 1
between scan 2 and 3 for instance. Part of these observations
might be due to inaccurate tumor volume estimates,
although three of the four methods we considered for the
volume estimates are used in clinical practice. For instance,
the same tumor had an estimated volume of 93.9 mL
according to the expert delineation, 62.4 mL with the Tmax
method and 75.8 mL with the Tcon method. Therefore, the
metabolic tumor volume derived from the PET images
should be interpreted with caution.

Recommendations have been published to guide the
assessment of tumor response from PET images [11]. These
recommendations are based on a threshold above which
SUV percent changes are considered significant. The SUV is
calculated in a fixed VOI delineated on the baseline scan.
These recommendations are used in clinical studies [12].
Our study showed that a single index can lead to a
erroneous interpretation of the tumor change, and propose a
statistically-based approach to test whether the observed
changes in SUV is significant or not, by accounting for the
variability existing between different SUV estimates.

5. CONCLUSION

By taking advantage of the different methods that can be
used to estimate tumor features (V, SUV or TLG) in FDG
PET, we introduced a simple approach to test the
significance of changes in tumor features between two
successive scans. Our results suggest that this might reduce
errors in interpreting tumor changes in the context of
therapy monitoring.
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